Incorporating Knowledge Base Techniques in Radar Signal Processing

Past, Present & Future

By: Mike Wicks

AFRL Sensors Directorate

History

Selected AI Research Topics at Rome

- Surveillance Internetting/ID, 1982. Aim: "Autonomous Control of Distributed Tactical Sensor Networks." Source: Rome Research Site Archives.
- Advanced Onboard Signal Processor (AOSP), 1982. Nine-node Experimental AOSP Developed. Aim: Multi Mission Signal Processing for Sensors in Space, Including Fault Detection & Reconfiguration Actions. Source: Rome Research Site Archives.
- Adaptive Control of Multi-Domain Sensor Processor, 1986. Aim: Apply Al for Controlling Parameters & Modes of Advanced Multi-Function Radar Systems. Source: Rome Research Site Archives.
- Expert System CFAR, 1988. Aim: Apply AI to Select & Apply CFAR Detector in Radar. Source: Rome Research Site Archives.
- Tactical Expert Mission Planner (TEMPLAR), 1989. Aim: Apply Al to Preparation of the Air Tasking Order (ATO). Source: Rome Research Site Archives.
- ELINT Expert Tutor, 1990. Aim: Apply AI to the Training of Signal Intelligence (SIGINT) Analysts at the Foreign Technology Division (FTD). Source: Rome Research Site Archives.
- Al Algorithms for Sensor Fusion, 1994. Aim: Apply Al to Automatic Target Recognition. Source: Rome Research Site Archives.
- Knowledge Base STAP, 1995. Aim: Apply AI to Assess the Environment & Apply the Most Appropriate STAP Algorithm. Source: Rome Research Site Archives.

Motivation for Knowledge Aided Approaches to Radar Signal and Data Processing

Dynamic & Non-Homogeneous Background Environment

The Benefit

- Greater than 10 dB End-to-End Radar Performance Improvements in Real-World Dynamic & Non-Homogeneous Environments
 - Airborne Radar
 - Space-Based Radar
- Enhanced Subclutter Visibility
 - AMTI
- Lower Minimum Detectable Velocity (< 0.1 Knot)
 - GMTI
- Improved Discrimination and/or Identification

Integrated End-to-End Radar Signal & Data Processing

Integrated Knowledge-Based Signal & Data Processing

- Each Stage of Processing Affects the Others
- Best Overall Performance is Achieved From an Integrated End-to-End Approach
 - Requires Integrated Design
 - Not Merely Data Passing From One Stage to the Next
 - > i.e. Match Degrees of Freedom, Statistics & Detector Design
 - Adaptivity & Feedback/Forward Essential
 - Waveforms Matched to the Problem

Waveform Diversity & Knowledge Base Control

Transmit Waveform Diversity

Some Applications

- Optimal Selection of Waveforms Based on Environmental Assessment
- Spatial-Temporal Denial of Enemy Sensors and Systems
- Simultaneous, Multi-Mission Waveforms, e.g. GMTI, AMTI, Track, ATR ("systems approach")
- Innovative Waveforms for New Missions (FOPEN, GPEN, etc.)

Spatial Denial – One Reason for Waveform Diversity

Expert System CFAR

Expert System CFAR

- ES-CFAR Was Our First Attempt at Using AI to Select Radar Signal Processing Algorithms & Parameters
- The CFAR Problem
 - Fielded Radar Signal Processors Are Designed To Use A Single, Fixed
 CFAR Algorithm
 - Any Given CFAR Algorithm Is Designed With Assumptions About The Background & Will Perform Optimally When These Background Conditions Are Realized In The Environment
 - In a Typical Airborne Radar Environment Clutter Parameters Are
 Dynamically Changing & a Single, Fixed CFAR Processor Will Exhibit
 Excessive False Alarms & Detection Degradation in Regions Where The
 Background Characteristics Violate The Design Assumptions

Our Approach

- Detection Processor Capable Of:
 - Monitoring The Radar Clutter Environment
 - Determining The Statistical Characteristics
 - Matching The CFAR Algorithm To The Environment
 - > Choice Of 4 Algorithms
 - » CA, GO OS and TM CFAR
 - > Variable Reference Window Size
- Payoff:
 - Improved Target Detection
 - Reduced False Alarms
 - Easily Implemented & At Relatively Low Cost

ES-CFAR Prototype

Measured Data Summary

EXPERT SYSTEM CFAR	BASELINE CELL-AVG.	BASELINE ORDERED STAT.
	DASELINE CELETAVO.	DAULLING UNDERED STATE

DESIRED P _{fa}	P_d	P _{fa}	P_d	P _{fa}	P_d	P _{fa}
1e-3	0.92	1.2e-3	0.62	2.5e-3	0.67	4.4e-3
1e-4	0.90	3.9e-4	0.51	8.0e-4	0.64	2.3e-3
1e-5	0.87	1.3e-4	0.44	3.3e-4	0.62	1.5e-3
1e-6	0.87	4.0e-5	0.28	1.6e-4	0.56	1.1e-3

• THE INCREASE IN SINR OTHERWISE REQUIRED TO IMPROVE DETECTION PERFORMANCE BY THIS AMOUNT IS ~ 5dB

KB Tracker

Knowledge-Based Tracking

With Maneuver

No Maneuver

Knowledge-Based Anticipates:

- Maneuvers
- Shadowing
- Discretes
- Road Traffic
- Multiple Targets

KB STAP

Controller for KB STAP

KB STAP

- The Logical Extension of ES CFAR to the Filter Stage of Processing
- End-to-End Processing was Investigated Under KBSTAP
 - Lower MDV
 - Smaller RCS

KB STAP in Bistatic/Multistatic Radar

Bistatic Radar

Payoff

- 2 Orders of Magnitude Improvement in Noise
- 3 Orders of Magnitude Improvement in Clutter

Range 12dB

Losses 2dB

RCS Enhancement 10dB

24dB In Noise

Signal Processing 10dB

34dB In Clutter

KB - Why Now?

- Potential Performance Gains Demonstrated with Advanced Algorithms
 - KB-STAP
 - Expert System CFAR
 - Knowledge-Based Tracking
- Emerging Embedded Processing Technology Provides
 Capability to Implement in Real-Time, Fielded Systems
- Waveform General Timing & Control Now Permits Interleaved & For Simultaneous Waveforms

Now We Can Demonstrate

Performance Gains of <u>Integrated</u>

Knowledge-Based Processing in *Real-Time*

Methodology

- "... Substantial Performance Improvements Will Likely Not Be the Result of Higher Power-Aperture Products"
- "... Substantial Performance Gains Will More Likely Be the Result of Advanced Processing Techniques"
- Careful Selection of Algorithms, Parameters, and Training Data Produces Significant Performance Improvements Over Conventional Processing
- An Integrated Approach to Dynamic Waveform Selection & Signal Processing (Filtering, Detection, Tracking, Identification,...)
- Greatest Improvements are Achieved in the Most Severe Environments

Intelligent Use of CFAR Algorithms, RL-TR-93-75, May 1993.

Novel Diverse Waveforms, AFRL-SN-RS-TR-2001-52, June 2001.

Knowledge-Base Applications to Ground Moving Target Detection, AFRL-SN-RS TR-2001-185, August 2001.

Measured Data is Important!

Sensors Surveillance Facility Rome Research Site

Multi-Channel Airborne Radar Measurements

S-Band Dual Polarized Track and Imaging Radar

C-Band Multi-Channel Dual Polarized Phased Array Radar

ESM/Bistatic Sensor Test Bed

High Performance Computing

L-Band Search Radar

27

MCARM Testbed & Antenna Array

KBTechs in RadarSigProc_Wicks 19Mar02

Magnitude of MCARM Steering Vectors

Ideal Array

$$s ? \int e^{jkd \sin ??} e^{j2kd \sin ??} \int e^{j?N?1?kd \sin ??} f$$

- Very Similar to Fourier Coefficients

MCARM Array

Practical STAP Processing

JDL Algorithm

Real arrays may not be linear and elements are not isotropic, leading to mutual coupling: the spatial steering vectors must be measured

Accounting for real antenna effects significantly improves on traditional STAP processing

30

Measured Steering Vectors: JDL

Assuming Ideal Array

Accounting for MCARM array effects

Processing Non-Homogeneous Data

- Statistical STAP Methods Estimate Covariance Matrix Using Secondary Data
 - Interference Assumed to be Homogeneous
- Real Radar Data is Non-Homogeneous
 - Terrain Variations
 - Multiple Interference Targets
 - Discretes/Blinking Jammers
- Use Non-Homogeneity Detector (NHD) or KB Map STAP
 - Eliminate Non-Homogeneous Cells From Estimate
 - Use JDL as our NHD

Secondary Data Selection

(a) Homogeneous Case

(b) Non-Homogeneous Case

Intelligent Sample Selection

KB MAP STAP Training Data Selection

Radar Visualization of Terrain Clutter & Injected Targets

The Hybrid Method

Hybrid Methods – Why?

- Motivation: How to Process Non-Homogeneous Cells?
 - Interference Has Correlated And Uncorrelated (Non-Homogeneous) Components
- Solution: Use a Hybrid Approach
 - Non-Statistical Processing Followed by Statistical Processing

Block Diagram of the Two-Stage Hybrid Algorithm

Performance Simulations

D3 (Direct Data Domain) Algorithm

Angle Response

Doppler Response

Performance Simulations

JDL Algorithm

Angle Response

Doppler Response

40

Performance Simulations

The Two-Stage Hybrid Method

Angle Response

Doppler Response

MCARM Data Analysis Using the Hybrid Method

Knowledge Based Space-Time Adaptive Processing (KB-STAP)

Data Source

Ground & Air Moving Target Indication

Classical STAP

Combined Approach

45

Enhanced Moving Target Indication Via KB-STAP

Targets Without Excessive False Alarms

Observation

- We Must Use All Available Information
- We Must Account for Real World Effects
 - Essential to Move Adaptive Processing form Theory to Practice
 - > Mutual Coupling
 - > Non-Homogeneous Data
- Accounting for Real World Effects Will
 - Improve STAP Performance
 - Marginally Increase Computational Load

The Future

- Leverage Considerable Previous Investments
- Put Knowledge-Based Algorithms Into Fielded
 & Developmental Systems

Integrated End-to-End Radar Signal & Data Processing

Transition to Users

Conclusions

- Maximum Leverage of Previous Investments
- Knowledge-Based Algorithms for Significant Performance Improvements
 - Multi-Pass Processing
 - End-to-End Integration
 - Knowledge-Based Control
- Real-Time Airborne Demonstration
- Transition to Fielded Systems